Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brief Bioinform ; 23(4)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35753701

RESUMO

Advances in whole-genome sequencing (WGS) promise to enable the accurate and comprehensive structural variant (SV) discovery. Dissecting SVs from WGS data presents a substantial number of challenges and a plethora of SV detection methods have been developed. Currently, evidence that investigators can use to select appropriate SV detection tools is lacking. In this article, we have evaluated the performance of SV detection tools on mouse and human WGS data using a comprehensive polymerase chain reaction-confirmed gold standard set of SVs and the genome-in-a-bottle variant set, respectively. In contrast to the previous benchmarking studies, our gold standard dataset included a complete set of SVs allowing us to report both precision and sensitivity rates of the SV detection methods. Our study investigates the ability of the methods to detect deletions, thus providing an optimistic estimate of SV detection performance as the SV detection methods that fail to detect deletions are likely to miss more complex SVs. We found that SV detection tools varied widely in their performance, with several methods providing a good balance between sensitivity and precision. Additionally, we have determined the SV callers best suited for low- and ultralow-pass sequencing data as well as for different deletion length categories.


Assuntos
Benchmarking , Genoma Humano , Animais , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Camundongos , Sequenciamento Completo do Genoma/métodos
3.
ArXiv ; 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33948451

RESUMO

More than any other infectious disease epidemic, the COVID-19 pandemic has been characterized by the generation of large volumes of viral genomic data at an incredible pace due to recent advances in high-throughput sequencing technologies, the rapid global spread of SARS-CoV-2, and its persistent threat to public health. However, distinguishing the most epidemiologically relevant information encoded in these vast amounts of data requires substantial effort across the research and public health communities. Studies of SARS-CoV-2 genomes have been critical in tracking the spread of variants and understanding its epidemic dynamics, and may prove crucial for controlling future epidemics and alleviating significant public health burdens. Together, genomic data and bioinformatics methods enable broad-scale investigations of the spread of SARS-CoV-2 at the local, national, and global scales and allow researchers the ability to efficiently track the emergence of novel variants, reconstruct epidemic dynamics, and provide important insights into drug and vaccine development and disease control. Here, we discuss the tremendous opportunities that genomics offers to unlock the effective use of SARS-CoV-2 genomic data for efficient public health surveillance and guiding timely responses to COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...